17 research outputs found

    Predicting aging-related decline in physical performance with sparse electrophysiological source imaging

    Full text link
    Objective: We introduce a methodology for selecting biomarkers from activation and connectivity derived from Electrophysiological Source Imaging (ESI). Specifically, we pursue the selection of stable biomarkers associated with cognitive decline based on source activation and connectivity patterns of resting-state EEG theta rhythm, used as predictors of physical performance decline in aging individuals measured by a Gait Speed (GS) slowing. Methods: Our two-step methodology involves estimating ESI using flexible sparse-smooth-nonnegative models, from which activation ESI (aESI) and connectivity ESI (cESI) features are derived. The Stable Sparse Classifier method then selects potential biomarkers related to GS changes. Results and Conclusions: Our predictive models using aESI outperform traditional methods such as the LORETA family. The models combining aESI and cESI features provide the best prediction of GS changes. Potential biomarkers from activation/connectivity patterns involve orbitofrontal and temporal cortical regions. Significance: The proposed methodology contributes to the understanding of activation and connectivity of GS-related ESI and provides features that are potential biomarkers of GS slowing. Given the known relationship between GS decline and cognitive impairment, this preliminary work opens novel paths to predict the progression of healthy and pathological aging and might allow an ESI-based evaluation of rehabilitation programs

    Automated Discrimination of Brain Pathological State Attending to Complex Structural Brain Network Properties: The Shiverer Mutant Mouse Case

    Get PDF
    Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbpshi/Mbpshi, n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6–100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers

    Decoding neural circuitry using Multivoxel Pattern Analysis (MVPA) and Functional Connectivity (FC) in fMRI data

    No full text

    Fast Gaussian Naïve Bayes for searchlight classification analysis

    Get PDF
    The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed in GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis

    Introducing BisQ, A Bicoherence-Based Nonlinear Index to Explore the Heart Rhythm

    No full text
    Nonlinear frequency coupling is assessed with bispectral measures, such as bicoherence. In this study, BisQ, a new bicoherence-derived index, is proposed for assessing nonlinear processes in cardiac regulation. To find BisQ, 110 ten-minute ECG traces obtained from 55 participants were initially studied. Via bispectral analysis, a bicoherence matrix (BC) was obtained from each trace (0.06 to 1.8 Hz with a resolution of 0.01 Hz). Each frequency pair in BC was tested for correlation with the HRV recurrent quantification analysis (RQA) index Lmean, obtained from tachograms from the same ECG trace. BisQ is the result of adding BC values corresponding to the three frequency pairs exhibiting the highest correlation with Lmean. BisQ values were estimated for different groups of subjects: healthy persons, persons with arrhythmia, persons with epilepsy, and preterm neonates. ECG traces from persons with arrhythmia showed no significant differences in BisQ values respect to healthy persons, while persons with epilepsy and neonates showed higher BisQ values (p < 0.05; Mann-Whitney U-test). BisQ reflects nonlinear interactions at the level of sinus-and atrial-ventricular nodes, and most likely cardiorespiratory coupling as well. We expect that BisQ will allow for further exploration of cardiac nonlinear dynamics, complementing available HRV indices

    Predicting functional networks from region connectivity profiles in task-based versus resting-state fMRI data

    Get PDF
    Intrinsic Connectivity Networks, patterns of correlated activity emerging from "resting-state" BOLD time series, are increasingly being associated with cognitive, clinical, and behavioral aspects, and compared with patterns of activity elicited by specific tasks. We study the reconfiguration of brain networks between task and resting-state conditions by a machine learning approach, to highlight the Intrinsic Connectivity Networks (ICNs) which are more affected by the change of network configurations in task vs. rest. To this end, we use a large cohort of publicly available data in both resting and task-based fMRI paradigms. By applying a battery of different supervised classifiers relying only on task-based measurements, we show that the highest accuracy to predict ICNs is reached with a simple neural network of one hidden layer. In addition, when testing the fitted model on resting state measurements, such architecture yields a performance close to 90% for areas connected to the task performed, which mainly involve the visual and sensorimotor cortex, whilst a relevant decrease of the performance is observed in the other ICNs. On one hand, our results confirm the correspondence of ICNs in both paradigms (task and resting) thus opening a window for future clinical applications to subjects whose participation in a required task cannot be guaranteed. On the other hand it is shown that brain areas not involved in the task display different connectivity patterns in the two paradigms

    Objects seen as scenes:Neural circuitry for attending whole or parts

    Get PDF
    Depending on our goals, we pay attention to the global shape of an object or to the local shape of its parts, since it's difficult to do both at once. This typically effortless process can be impaired in disease. However, it is not clear which cortical regions carry the information needed to constrain shape processing to a chosen global/local level. Here, novel stimuli were used to dissociate functional MRI responses to global and local shapes. This allowed identification of cortical regions containing information about level (independent from shape). Crucially, these regions overlapped part of the cortical network implicated in scene processing. As expected, shape information (independent of level) was mainly located in category-selective areas specialized for object- and face-processing. Regions with the same informational profile were strongly linked (as measured by functional connectivity), but were weak when the profiles diverged. Specifically, in the ventral-temporal-cortex (VTC) regions favoring level and shape were consistently separated by the mid-fusiform sulcus (MFS). These regions also had limited crosstalk despite their spatial proximity, thus defining two functional pathways within VTC. We hypothesize that object hierarchical level is processed by neural circuitry that also analyses spatial layout in scenes, contributing to the control of the spatial-scale used for shape recognition. Use of level information tolerant to shape changes could guide whole/part attentional selection but facilitate illusory shape/level conjunctions under impoverished vision
    corecore